LOCALLY PSEUDO-VALUATION DOMAINS OF THE FORM D[X]Nv

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-almost valuation rings

The aim of this paper is to generalize the‎‎notion of pseudo-almost valuation domains to arbitrary‎ ‎commutative rings‎. ‎It is shown that the classes of chained rings‎ ‎and pseudo-valuation rings are properly contained in the class of‎ ‎pseudo-almost valuation rings; also the class of pseudo-almost‎ ‎valuation rings is properly contained in the class of quasi-local‎ ‎rings with linearly ordere...

متن کامل

Locally GCD domains and the ring $D+XD_S[X]$

An integral domain $D$ is called a emph{locally GCD domain} if $D_{M}$ is aGCD domain for every maximal ideal $M$ of $D$. We study somering-theoretic properties of locally GCD domains. E.g., we show that $%D$ is a locally GCD domain if and only if $aDcap bD$ is locally principalfor all $0neq a,bin D$, and flat overrings of a locally GCD domain arelocally GCD. We also show that the t-class group...

متن کامل

Pseudo-Valuation ‏‎Near ‎ring‎ and Pseudo-Valuation N-group in Near Rings

In this paper, persents the definitions of strongly prime ideal, strongly prime N-subgroup, Pseudo-valuation near ring and Pseudo-valuation N-group. Some of their properties have also been proven by theorems. Then it is shown that, if N be near ring with quotient near-field K and P be a strongly prime ideal of near ring N, then is a strongly prime ideal of ‎‎, for any multiplication subset S of...

متن کامل

pseudo-almost valuation rings

the aim of this paper is to generalize the‎‎notion of pseudo-almost valuation domains to arbitrary‎ ‎commutative rings‎. ‎it is shown that the classes of chained rings‎ ‎and pseudo-valuation rings are properly contained in the class of‎ ‎pseudo-almost valuation rings; also the class of pseudo-almost‎ ‎valuation rings is properly contained in the class of quasi-local‎ ‎rings with linearly ordere...

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2008

ISSN: 0304-9914

DOI: 10.4134/jkms.2008.45.5.1405